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fiir sich homogene Ketten, die in Richtung der Raum-
diagonalen verlaufen: in aufeinanderfolgenden Ebenen
wechseln die Ketten ihre Richtung. In Fig. 2 ist
eine Zelle in flichenzentrierter Aufstellung gezeichnet,
in die die kleinste Zelle (innenzentrierte Aufstellung,
siehe Fig. 3) hineingestellt ist. Der Abstand zwischen
zwei Kupferionen und zwischen zwei N| betriigt jeweils
3,36 A. (weitere Abstandsverhdltnisse Tabelle 2).

Tabelle 2. Nachbarschaften des ('uN,-Cilters

gleichw. Nachb.

—— e s -5 Abstand

Atomart Anzahl Art in A.
Cu 4 Cu 3,36
2 u 4,33

2 Cu 5,15
2 N, 2,795

4 N, 3,36

4 Ny, 2,23

2 Ny 3,28

2 N, 3,56

N, 2 N, 3,56

Alle anderen Nachbarschaften wie Cu

Das Gitter konnte, auch wenn nur der Schwerpunkt
der N;-Gruppe beriicksichtigt wurde, nicht auf einen
bekannten Gittertyp zuriickgefithrt werden.

Ein Vergleich der gefundenen Struktur mit den
Azidstrukturen benachbarter Elemente in der ersten
Gruppe des periodischen Systems zeigt, dass das CuXN,
aus dem bisher beobachteten Bauprinzip heraustillt.
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DIE KRISTALLSTRUKTUR DES EINWERTIGEN KUPFERAZIDS, CulNj,

KN, kristallisiert in der Raumgruppe D3~ 14 mem und
kann als ein deformiertes CsCl-Gitter anfgefasst wer-
den (Hendricks & Pauling, 19253). Auch AgN; gehort
dem F5,-Typ an, ist jedoch rhombisch und nur noch
pseudotetragonal (Bassicre, 1935). Die Zelle enthélt in
beiden Fillen 4 Molekiile. Beim CuNj besteht die Zelle
aus 8 Molekiilen, und ein charakteristisches Merkmal
der anderen aufgefiihrten Strukturen—zur Basis paral-
lele, senkrecht aufeinanderstehende N -Ketten-—ist
nicht mehr vorhanden. Diese Anordnung ist nur noch
in der Projcktion auf die Basisebene wiederzufinden,
gegen die die Ketten eine Neigung von 36° 43 haben.
Die unerwartete Gitterbildung des Kupferions ist auch
bei einigen anderen (u-Verbindungen zu beobachten,
z.B. beim Oxyd und den Halogenverbindungen.

Herrn  Professor Dr. Masing danke ich fir sein
férderndes Interesse an dieser Arbeit, Herrn Professor
Dr. Ernst fir seine stetige Unterstiitzung.
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The Use of the ‘Fly’s Eye’ Apparatus to Study Crystal Structures containing
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Introduction
The ‘Fly’s Eye’ apparatus (Bragg, 1944), as improved
by Stokes (1946), consists of a regular array of tiny
perspex lenses embossed on a perspex sheet. Its purpose
is to form a multiple photograph of a proposed crvstal
structure projected along some crystallographic direc-
tion. This multiple photograph can then be used as a
diffraction grating for visible light, and it will give
orders of diffraction which have intensities similar to
the X-ray reflexions from the real crystal in a zone
corresponding to the direction of projection.

A fly’s eye apparatus is a valuable aid in the trial and
error method of crystal analysis. It was, for example,
extensively used by Bunn in the determination of the
structure of penicillin.

* Now at Univt;;s-ity-u.fr' stél[t;xllJbscli, South Africa.

Originally the fly's eye consisted of an array of
multiple pinholes instead of lenses, and the complete
picture was obtained by moving a lamp into the
different atomic positions, and exposing a photographie:
plate at every position of the lamp. A positive print of
this negative photograph was then used as the dif-
fraction grating. When the lens fly’s eve was introduced
itbecame practicabletouse black disksonanilluminated
background which gave the whole multiple picture at
one exposure. This picture, consisting of transparent
apertures on an opaque background, can be used at
once as the optical diffraction grating. As this picture
is remarkably clear and well resolved it becomes worth
while to inquire fully into the relation between the
number and intensity of the orders observed and the
size and shape of the apertures.
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Theory of the grating

A lens is placed behind the grating and parallel mono-
chromaticlight is transmitted through it. The diffraction
pattern which is observed in the focal plane of the lens
is therefore the Fraunhofer diffraction produced by an
array of circular apertures which repeat regularly in
two dimensions on a square net. Consequently the
pattern consists of an array of orders also arranged on
a square net. The intensities of the different orders
depend on the structure of the repeating pattern of
apertures, but are also modulated by the single-
aperture diffraction pattern produced by each of the
circular apertures. _

The angular spread of light behind the grating de-
pends on the size of the apertures, i.e. on the size of the
black disks used on the illuminated screen. The first
minimum of the single aperture Fraunhofer diffraction
pattern produced by each of the circular apertures
occurs at an angle 8 such that

6=1-22\/d,

where d is the diameter of the circular aperture.

The number of orders of diffraction contained within
this angular spread depends on the repeat distance of
the grating. The angular separation of consecutive
orders is given by

sin ¢=A/b

or $=2A/b,

since b, the repeat distance, is much greater than A.
If it is desired to observe = orders, these n orders
must subtend an angle less than 6, or

ng=nA/b<1-22)/d,

i.e. the ratio d/b should be less than 1-22/n.

Clearly the ratio d/b is the same as the ratio between
the diameter of the black disks and the side of the
illuminated screen, which was 20 cm. in the apparatus
used. To observe = orders therefore the diameter of the
black disks had to be less than (1-22 x 20)/n cm.

Consider first a structure containing one kind of
atom only. It can be represented by a grating with
apertures all of the same size. The intensity of the light
at any point in the focal plane where the Fraunhofer
diffraction pattern is observed is proportional to the
square of the amplitude of the disturbance at that
point. The intensity of reflexion of X-rays from a set
of planes in an ideally imperfect crystal is proportional
to the square of the scattering factor, f, of the atoms.
In order that the corresponding orders of diffraction of
visible light by the grating and of X-rays by the crystal
should have the same intensities, it is apparent that
the amplitude curve of the single aperture diffraction
pattern and the f-curve of the atom it represents should
be similar in shape.

Text-fig. 1 shows the amplitude curve of the central
maximum of a circular single aperture. This curve has
been drawn from tables given by Airy (1834), who was
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the first to obtain a mathematical expression for it
(see also Preston (1928), p. 324). Comparing it with a
typical scattering-factor curve of an atom it is clear
that it falls off rather too slowly near the origin, and
too rapidly when it approaches the first zero value.
Nevertheless, the size of the disks can be so chosen that
the amplitude curve shows a fair amount of resemblance
over a limited range to the atomic f-curve. The ampli-
tude curve is plotted with an arbitrary scale of ordinates
so chosen that it coincides with the f-curve at the
origin. Its rate of falling off with angle, and therefore
its position of intersection with the f-curve, depends on
the radius of the disk. This is now so chosen that the
intersection occurs at a certain angle «, where all the
orders being investigated (say the first five) lie within «
of the origin. If « is still a fair amount smaller than the
angle for the first zero value, the amplitude curve gives
a satisfactory approximation to the f-curve over this
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Text-fig. 1. Amplitude curve of single-aperture diffraction
pattern against phase difference of light from opposite edges.
a, Circular aperture; b, ring-shaped aperture of half area;
¢, scattering factor curve of silicon.

angular range. The consecutive orders of diffraction
consequently show a satisfactory falling off in intensity
in the same range. The dotted curve of Fig. 1 is an
actual example. It shows how the f-curve for silicon
could be made to fit approximately the amplitude curve
of a disk. In the actual mineral in which these silicon
atoms occurred, five X-ray orders fell within this
angular range.

If the projected unit cell of the crystal is not approxi-
mately square, the diminution of f with X-ray orders
is not the same in the two axial directions. It is
obviously impractical to make a separate fly’s eye
apparatus with repeat distances between the lenses
proportional to the axial lengths of the projected cell for
every new crystal studied, nor is it necessary. The
circular disks used need only be replaced by other
shapes that give amplitude curves falling off at different
rates along the axes. In his historic paper, Airy showed
that the diffraction pattern of an elliptical aperture is
also elliptical in shape with major and minor axes in the
same ratio as those of the aperture, but transposed. If



120 USE OF THE ‘FLY’S
therefore the unit cell isrectangular, the disks should be
replaced by ellipses with major and minor axes pro-
portional to the axial lengths, and they should be
oriented on the square cell with their major axes coin-
ciding with that edge of the fly’s eye cell which corre-
sponds to the short edge of the real cell.

When the unit cell is not rectangular, the shape and
orientation of the ellipses that must be used can best
be found by the following graphical method:

The reciprocal lattice net of the crystal projection
is drawn and a circle described on it with centre at the
origin and any radius fairly large compared with the
axial repeat distances. All orders on this circle have
the same Bragg angle 6, and hence the same f. The
points obtained by reading off the co-ordinates of the
circumference on the reciprocal lattice net are now
plotted on ordinary squared paper. This gives an
ellipse. The squared paper may be considered to repre-
sent the reciprocal lattice of a square cell, and the

ellipse on it now defines all orders which should have

l
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Text-fig. 2. Graphical determination of the shape and orienta-
tion of the elliptical disks. a, Circular disk for non-rectangular
cell; b, corresponding elliptical disk for square cell.

the same f if the real crystal cell is to be represented by
a square fly’s eye cell. If this ellipse is now turned
through 90°, its shape and orientation gives the shape
and orientation of the ellipses which should be used
instead of circles on the illuminated background (Text-
fig. 2).

Atoms of different scattering power

If the crystal structure is built up of atoms of different
scattering power, either the disks representing the
atoms should be made of different sizes or the opacity
of their multiple images should be varied. The latter
may be done by removing those disks representing the
lighter atoms at appropriate times during the exposure
which produces the multiple photograph. The objection
to thisis that it demands a very rigorously standardized
development technique to ensure veproducible results,
especially since high contrast photographic plates must
be used.

The other alternative is to vary the area of the disks.
The amplitude at the centre of the optical single-
aperture diffraction pattern is proportional to the area
of the aperture, and if a number of apertures of different
sizes are used each gives an amplitude at the centre

EYE' APPARATUS
proportional to its own area. The total amplitude there
is then the sum of these constituents, since they are all
in phase. The intensity at this point is therefore pro-
portional to the square of the sum of the areas. Similarly
the intensity of the zero-order X-ray reflexion is pro-
portional to the square of the sum of the f-values. The
area of each disk should therefore be made proportional
to the f-value at 0=0 of the atom it represents.

The most obvious way of altering the area of the
black disk is by altering its radius. However, the radius
has already been fixed to satisfy tlie requirement that
the amplitude curve shall be of the correct shape: it
cannot now be altered to let the curve have the correct
peak magnitude. Neither is there any possibility of a
compromise, since the two requirements work in
opposite directions: the amplitude curve of an aperture
falls off more slowly the smaller the aperture, and the
f-curve for an atom falls off more rapidly the lower the
scattering power. The only other possibility is to cut
out a hole from the centre of the disk. This Las the
result, as Airy has shown, that the diffraction pattern
falls away faster and reaches its first minimum at a
smaller angle than that of a solid disk.

Theory shows that the amplitude curve produced by
such an annular aperture can be obtained by sub-
tracting the amplitude curve of a circular aperture with
radius equal to that of the central opaque patch from
that of an aperture with radius equal to the outer
radius of the annulus. This also follows at once from the
consideration that the amplitudes at every point in the
central maximum have the same phase, that is the phase
that would be produced by a disturbance arising from
an infinitely sall element at the centre of the aperture.

The correct procedure, therefore, to reduce the area
of the aperture without altering the angular spread of
its diffraction pattern is to make a central hole in
the black disk (which contracts the angular size of its
eventual diffraction pattern) and also to reduce its
outside radius (which expands the pattern again to its
original angular extent). For every area wanted there
exists a pair of radii defining an annular aperture which
will give a diffraction with central maximum of the
same angular extent as the central maximum of the
largest circular aperture employed in a given fly's eve
picture (i.e. that satisfying the requirements of the
preceding section).

The secondary maxima produced by such ring-shaped
apertures are much more pronounced than those of
circular apertures, but these do not concern us here.

Text-fig. 3 shows a graph from which these pairs of
radii can be read off at once. Itisreally a plot of the cal-
culated amplitude produced by a circularaperture of any
radius @, where a is a fraction, in that angular direction
in which the amplitude curve of an aperture of unit
radius would fall to its first zero value. A straight-edge
laid across the graph parallel to the a-axis fixes two
fractional radii, @, and a,, which both produce the same
amplitude in the angular direction of the first zero value
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of the unit-radius aperture. When the subtraction rule
is kept in mind it is clear that an annulus with these
radii will now also give its first zero value in that
direction.

The radius of the disk representing the heaviest atom
should first be determined from considerations of the
numiber of spectra which is to be rendered correctly, as
explained above. This is then the unit radius. The radii
of each ring representing a species of lighter atom in the
structure with f-value a fraction of that of the heaviest
atom can then be found by shifting the straight-edge
parallel to itself until «3—af is the desired fraction. If,
for instance, the light atom has haif the scattering
power of the heavy one, the values a; =040, ¢,=0-81
give the correct radii for the ring to represent the light
atom. As 0-812—-0-402=0-5, the ring has half the area

=4
=
T

Amplitude

005

06 08 X 4-0a

0 L fi L ) L A L
501 605 o1 07 03 04 05 06 07 0B 09 &
Radius and Radius? B

Text-fig. 3. Amplitude at position of first zero value for unit-
radius aperture plotted against radius of aperture, a, ex-
pressed as a fraction of that unit radius.

of the disk and hence gives a diffraction pattern with
amplitude at the origin half that of the disk. The shape
of the amplitude curve of this ring is also shown in
Text-fig. 1. It has the same angular extent as the curve
produced by the disk, but is everywhere approximately
half the height.

If the object is to adjust conditions so that the
amplitude curves of the apertures representing the
different atoms fall away at different rates in order to
simulate the varying rate of fall in f for light and heavy
atoms, the size of the rings can be varied to give the
first zero value at smaller angles.

When this scheme is used, a complication arises from
the mechanism of the photographic development tech-
nique. We have hitherto assumed that we are dealing
in the developed plate with perfectly transparent areas
on a perfectly opaque background. In fact, however, in
the developed photograph the transparent portions of
the images of the rings are generally a good deal more
dense than those of the large disks. Owing to scattered
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light the grains of developed silver encroach on the
transparent domains and obviously this effect is more
serious for the rings. This should be allowed for by
making the outside radius of the rings larger and the
inside radius smaller than the calculated amount. The
correction is necessarily empirical as it depends on the
time of exposure and the development technique. To
determine whether the correct amount of correction
has been given the following preliminary experiment
should be made:

The two apertures to be compared should be placed
on the screen at the points (1), 0) and (05, 0-5) (or rather
at (0-25, 0-25) and (0-75, 0-75) which avoid the cell
corners) and a fly’s eye photograph taken. The dif-
fraction pattern produced by this grating has orders
which are alternately strong and weak, as disturbances
from the two sets of apertures are alternately in phase
and out of phase. If, for instance, the aim is to get
apertures representing two atoms one of which has half
the scattering power of the other, the amplitudes of
the sets of strong and weak orders should be in the ratio
(1+3):(1—4%), that is 3:1, and the intensity ratio
should therefore be 9:1. This case is illustrated in
Plate 3, fig. 1.

Experimental details

Making the multiple image photograph. When the size
of the disks and rings to represent the atoms has been
chosen, they are placed at their co-ordinate positions
on the illuminated background. This illuminated back-
ground, as explained by Stokes, should be made slightly
larger than the correct size for the square unit cell in
order to ensure that the background of the fly’s eye
photograph is black all over, and does not show slits of
light where two adjacent pictures fail to unite because
of an error in the position of the lenses.

An exposure is then made through the fly’s eye plate
on to the process plate, which after development forms
the grating. In this connexion there are two points to
be noted:

(a) Choice of origin. When placing the disks on the
illuminated screen it is best to try to choose the
arbitrary origin in such a way that all disks avoid
cell edges and corners. Placing a disk on an edge
involves placing one on the opposite edge as well,
and a disk on a corner needs similarly placed
disks on the three other corners. The resultant
aperture in the photograph is then built up by all
these contributing disks, and any slight error in
the position of a single lens will distort the shape
of these composite images.

(b) Influence of exposure time. As mentioned above
the illuminated screen is slightly larger than the
correct cell size. This causes the whole fly’s eye
photograph to be crossed by a square grid which
has been given double the exposure of the back-
ground. Unless the total exposure is made so
long that this grid is unnoticeable when the
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picture is held up to a strong light, the speetra
on the axes will be affected. The smaller the
apertures used the more important this becomes.
Plate 3, fig. 2 shows the diffraction pattern pro-
duced by this grid alone. The grating was
obtained by putting no disk on the screen, and
making the exposure time slightly too short.

A moderate overexposure followed by subtractive re-
duction with a strong solution of sodium thiosulphate
to which a few drops of potassium ferricyanide solution
have been added, is advantageous to brighten up the
apertures, but this extra processing makes accurate
control of the relative transinission of the differently
sized apertures more difficult.

Recording the diffraction images. The diffraction pat-
tern produced by the grating was obtained by using
a mercury-vapour concentrated-source discharge lamp
with a small pinhole aperture. The strong blue light of
the source was isolated by using a deep blue filter. The
grating, mounted with iminersion oil between two
optical flats, was placed between two lenses of about
150 cm. focal length. The first collimated the light from
the source into a parallel beam, while the second pro-
duced the Fraunhofer diffraction pattern in its focal
plane, where it was directly recorded on a fine grain
plate. The orders of diffraction were separated only by
about()-5mm.onthisplate, but the use of a pinhole small
compared with this separation, as well as very good-
quality lenses, gave remarkably clear and well-resolved
pictures. They could easily be studied by viewing with
a reading lens against an illuminated sheet of paper.

Estimation of intensity. The intensity of the orders of
diffraction was estimated by visually comparing the
spots with an intensity scale. This intensity scale was
made by photographing the image of the pinhole
suitably reduced in intensity, and using the same lens
system. A series of varying exposure times was given
and the time-intensity reciprocity law was assumed to
be valid in assigning intensity values to the graded row
of spots. Using filters with known transmission coetfi-
cients a real intensity scale was also made, but visual
comparison of the spots does not possess so high an
accuracy that any significant difference could be de-
tected between the time scale and the real intensity
scale.

As the intensities of the different orders of diffraction
vary by very large factors, one photograph of the
diffraction pattern was generally not sufficient. Three
photographs differing in exposure times by a factor of
five were found to be adequate.

Results

(a) Sodium chloride. The strong and weak X-ray
reflexions of sodium chloride for orders with even and
odd indices can be demonstrated by means of the fly’s
eye when the structure of NaCl projected on (110) is
placed on the screen. The rings representing the sodium
ions should have half the area of the solid disks which

‘FLY’S EYE’
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represent the chlorine ions. As the repeat distances for
this projection are in the ratio 1: 14’2, the f-values for
orders of reflexion along the two axes do not fall off
at the same rate. To get this effect with the square
screen of the fly’s eve, ellipses and elliptical rings were
used instead of circles. These ellipses had axes in the
same ratio 1:1/,/2; the major axis coincided with the
short cell edge. Plate 3, fiz. 3 shows the diffraction
pattern obtained, with the strong spectra on the
average nine times more intense shan the weak spectra.

(b) Iron pyrites. Asit was considered that the actual
vanishing of certain orders might be a better test for the
fly’s eye, the h0O orders of iron pyrites, FeS,, were
obtained. These spectra as measured on the ionization
spectrometer have intensitics 100, 0, 0, 14, 4 (Bragg,
1913). The vanishing of the second and third orders is
due to the position of planes of sulphur atoms dividing
the Fe-Fe distunce in the ratio 1:5.

When disks of the correct size for iron, together with
half-area rings for the sulphur atoms, were placed on
the screen at points having the correet x co-ordinates,
the orders of diffraction given by the fly’s eye grating
along this axishad the intensities shown in Plate 3, fig. 4,
which is in good agreement with the X-ray intensities.

(¢) Diopside. When the unit cell of diopside (Warren
& Bragg, 1928) is projected on the (010) plane it is very
elongated in shape with ccll edges in the ratio 1-85: 1.
Furthermore, the cell has an obtuse angle of 105° 50",
It was therefore a good test for the fly's eye apparatus
to try to render the 20! reflexions correetly, especially
as the structure contains atoms of widely different
scattering factor.

The right shape and orientation for the ellipses to be
used were found as explained above. The necessary
axial ratio of the ellipses was found to be 2:05: 1, and
they had to be so oriented that their major axes made
an angle of 15° with the z-axis of the square fly’s eye
cell (Plate 4, fig. 5). The correct sizes for the different
disks and rings were found in the following way: The
f-values for the constituent atoms at small angles of
reflexion are in the following ratio:

Ca + Mg (superimmposed) 24-4
Si 10-2
0O 6-6

The areas had therefore to be in this ratio, duly allowing
for the photographic density effect. 1t was decided to
render correctly the first five spectra along h and the
first three along I. For the highest of these spectra the
f-value for Ca+ Mg has fallen to 0-4 of its low-angle
value, for Si also to 0-4, and for O to 0-2. The sizes of
the disks and rings were therefore calculated to give
this same falling off in the single-aperture diffraction
pattern at the positions where these optical orders
occurred. This necessitated using quite large and
narrow rings for the oxygen atoms, which had the un-
fortunateresult that twooverlapped asshown in Plate 4,
fig. 5. However, the parts of the rings actually super-
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Fig. 1. Alternate strong and weak orders. Fig. 2. Diffraction pattern produced by under-exposed
fly’s eye grating without any apertures.

Fig. 3. The strong and weak orders produced by NaCl. Fig. 4. The h00 spectra of iron pyrites, FeS,. Only
orders along the horizontal axis are significant.

[To face p. 122
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Fig. 5. Enlargement of a small part of the diopside grating.

Fig. 6. Optical diffraction pattern of diopside Fig. 7. Optical diffraction pattern of diopside
grating with elliptical apertures. grating with circular apertures.
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imposed were small compared with their total area; con-
sequently this overlapping did not have a serious effect.

The arbitrary origin on the illuminated screen was so
chosen that no atom had to be duplicated in order to
render the structure correctly. The repeating pattern
in this projection is the quarter unit cell, thus only X-ray
reflexions with even indices are present. It was there-
fore necessary to put only the contents of the quarter
unit cell on the fly’s eye screen. The indices of the
optical orders of diffraction obtained were then
doubled.
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calculated intensities is good but not perfect. This must
be due to the fact that there is only approximate
similarity between the atomic f-curves and the single-
aperture amplitude curves. The agreement is, however,
so good that there is no difficulty in recognizing the
substantial correctness of a proposed structure. Used
as above the fly’s eye apparatus can therefore be a
valuable aid for the quick and approximate deter-
mination of intensities, not only when the atoms all
have the same scattering factor, but also when both
light and heavy atoms are present.

Table 1. Observed intensities of the orders of diffraction given by the diopside grating compared with the calculated
intensities of the hOl X -ray reflexions

N 8 i 3
h \ e A | | A et e
Obs. Cale. Obs. Cale. Obs Cale
0 30 23 170 114 300 300
2 0 0 5 5 70 72
4 30 51 80 70 120 98
6 0 2 2 4 0 0
8 — — 5 10 30 26
10 — — — — 40 56

Plate 4, fig. 6 shows the optical diffraction pattern
obtained, using this diopside grating. Table 1 compares
the estimated relative intensities of the diffracted
orders with the calculated intensities of the AOI re-
flexions of the diopside crystal. The arbitrary scale for
the estimated intensities was adjusted to give equal
values for 002.

Plate 4, fig. 7 shows the diffraction pattern obtained
when circular disks of the correct areas are used instead
of the elliptical disk and rings. It is clear that the
intensities of Plate 4, fig. 6 show a much better
agreement than Plate 4, fig. 7 with the calculated
values.

It is seen that the agreement between observed and

0 2 4 6

—_——— . f— e st \
Obs, Cale. Obs. Cale. Obs. Cale. Obs. Cale.

- — 300 300 170 114 30 23

2 1 15 19 5 0 5 18

5 3 150 137 100 72 60 23

120 130 120 110 140 92 20 7

50 48 10 9 0 0 — —

40 31 50 48 — — — —_—

I wish to thank Prof. Sir Lawrence Bragg who suggested
the problem and who showed unfailing interest in its
development, and Dr Helen Megaw for many helpful
discussions and willing co-operation.
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